
UNBALANCED BIDDING MODELS WITH RISK CONSIDERED 

Omit Akinç* 

So-called "Unit Price Proposals5' indicate the sponsor's antici-
pated items, and the estimated number of each item deemed ne-
cessary to achieve the objective of the proposal. Bids are solicited 
per unit of each stem from which the total bid is extended. In ge-
neral, the contract is awarded on the basis of the total bid, whereas 
the payments are made on the basis of the amounts actually mate 
rialized and on their corresponding unit bids. 

An unbalanced bid is one which does not necessarily reflect 
the bidder's economic price to provide a unit of the corresponding 
item. There are several motivations for an unbalanced bidding 
strategy. First, by manipulating the unit bids, the bidder effectively, 
controls the timing of the reimbursements thereby alleviating much 
of the financing burden of the proposal. Second, in general, the 
solicited amounts do not necessarily reflect the best estimates of 
the amounts required. The bidder may conduct an investigation 
to accurately assess the required quantities. Thus, if the bids are 
held lower on items for 'which the requirements are overestimated, 
the bidder, without increasing his total bid, may increase his expec-
ted returns by bidding high on those items which are underestima-
ted. 

To optimally unbalance a bid Stark (1888) proposes a standard 
linear programming (LP) scheme. He maximizes expected returns 
subject to constraints which require (1) that the total bid does not 
exceed the one which is previously determined through game theoric 
considerations^1) (2) that the individual bids do not violate certain 
techonological and formality relationships (e.g., the bid for a cer-
tain item must not be greater than that of another), and (3) that 
the rate at which payments are made by the sponsor for completed 
items be in line with a comfortable financial planning of the proposal. 

* Assistant Professor at the Middle East Technicai University, Department of 
Management, Ankara. 

(1) Clearly determination of the total bid and optimally unbalancing the total 
bid are two separate problems. 
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The main objection to this formulation stems from its exclusion 
of a very genuine concern of the bidder. By manipulating the unit 
bids the bidder assumes some risk in terms of financial losses 
which is completely ignored by the LP formulation. A different de-
velopment that takes explicit account of the risk involved is the 
subject of this paper. 

We present three formulations which differ slightly in terms of 
conceptualization, but largely in terms of solution procedures. The 
main idea, common to all, is to treat whatever measure of risk used 
as a parameter to obtain optimum exepcted returns as a function 
of risk We wil l refer to this relationship as the "eff icient locus." A 
utility function similar to those used in portfolio selection analysis 
will be used together with the efficient locus to single out the most 
desirable solution on the efficient locus (for further discuss.on of 
these points see Markowitz (1959)). 

Proposed Models 

Notation. 

Xi 
Yi 
N 

unit bid for item i. 
out-of-pocket cost per unit of item i. 

chance variable describing the actual requirements a 

W 

n 

Ni 
fi (Ni) 

D 

for item i. 
amount solicited, 
density function of Ni. 
mean of Ni 
variance N ; 

number of items in the proposal. 
Total Bid. 

Problem I (P. 1) 
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Max z = E[2 (Xi — yd N,] (1) 
i 

s. t. 2 X; Ni = D (2) 
i 

xr xe ^ 0 for some r and e (3) 

U ^ Xi < Ui for all i (4) 

Pr [S (Xi — Yi) Ni > T] > a. (5) 

To solve P. 1., the last constraint must be put in some opera-
tional form. This would require that we make some assumptions on 
the shapes of f's. If fL's are normal! then S(Xi—y^Ni will also be i 
normal; if normality of Vs is not justified, with N{ independent and n 
sufficiently large 2(Xr -yJNi will approach normality as a consequ-

i 
ence of the central limit theorem. The parameters of the returns 
distribution are 

ixr = 2(Xi—yi).pi and crr = (x—Yi) ( x — Y j ^ i j . 
i i j 

where <r\ = E[ (Ni — j iJ (Nj — ixt) ] = 0 i ^ j 

Constraint (5) can now be replaced with 

T — S (Xi — yjpi < Za [2 S(Xi — y j (Xj — yj)*2 

i i j 
Technically, P.I. is a non-linear, non-separable problem *or 

which efficient solution schemes are not available. One of the seve-
ral gradient search techniques may be employed to solve the prob-
lem. This would, however, be very impractical due to: (1) the inhe-
rent computational burden of the search techniques i and (2) treating 
a and T as parameters would require many solutioins to P.I. for 
various combinations of a and T. 

Problem II (P. II) 

The following formulation uses the variance of the returns func-
tion as the measure of the risk; this is a well accepted measure in 
the portfolio selection problem which is conceptually similar to the 
problem at hand(2). Specifically we want to minimize the functional, 

2 25 (Xi — Yi) (Xj — Yj) 

(2) For instance see Markowitz (1959). 
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s.t. Eqs. (2), (3), (4) and 

2 (Xi — y;) y.; ^ T 
i 

The reader should note that minimizing the variance for different 
levels of expected returns will define the same efficient locus 
as maximizing the expected returns for various levels of variance. 
Posing the problem in this fashion is computationally advantageous 
for P. IS is a quadratic programming problem (optimizing a quadratic 
form subject to linear restrictions) for which solution schemes are 
available, such as the quadratic simplex algorithm. 

Probleim III (P. Ill) 

Here we present a simplified version of the problem which will be 
used as a vehicle to establish several important results pertaining to 
the behavior of the efficient locus. Assuming Gov (N^Nj) = 0, and 
disregarding restrictions (3) and (4) we have 

max z = 2 ti [Xi (9) 
i 

2 ^ N i = B (10) 

2 t2i cr2i o·2 (11) 
i 

where a2 is the desired variance of the total returns, ti = Xj — y{ 

and B = D — 2 Yi Ni-
i 

It is easy to show that restrictions (10) and (11) are convex sets 
therefore the feasible region of P. Ill is convex. It is a well known 
fact that a linear function achieves its extrema over a convex set at 
the boundary of the feasible set. Hence, to solve P. Ill it is sufficient 
to examine the stationary points of the lagrangian: 

L ( U a 2 ) = S t^Xi — X1 (2 ti Ni—B) — M 2 t V 2 i — o*) (12) 
i i i 

where t = (t l f t2, tn). 

The stationary points of L(.) satisfy the following conditions: 

9 L 
= — XiNi — 2X2tiO-2i = 0 ¡ = 1 n (13) 

a t ; 
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a l 

d\i 

d l 

= S t iNi -
i 

= S t v 2 i 

B = 0 

cr2 = 0 
9 X2

 1 (15) 
Above conditions with Xi,X2>0 are necessary and sufficient for a 
global optimum due to the convexity of the feasible region and the 
linearity of the objective function. The solutions to the above system 
can be obtained by first solving the Eqs. (13) for U and substituting 
in (14) and (15) to yield two equations in two unknowns, X l f \2 . Since 
(15) is quadratic, in general, there will be two pairs (X'l.X'a). 

(h"X") satisfying the system. 
MN2 — NN . MM 

MN + W = 

X'2 = (MN 

1 
B-

NN 

/ NN 

NN . X\) / 2B 

MN2 — NN . MM / 
MN — / I , _ _ NN 

B2 

/ NN 

X"2 = (MN — NN . X",) / 2B 

where 

(16) 

(17) 

(18) 

(19) 

IXiNi 
MN = X > 0, 

' Gi 
Solutions to P. Ill 

V-i 
MM = 2 — ^ 0 

1 o f 

N r 
and NN = S — > 0. 

In this section we establish the optimality conditions of P .III. The 
following results wil l be used in the development that follows. 

Lemma 1 MN2 — MM.NN^O if N i>0, m ^ O i = 1,2...,n. 

proof: let m ; = 
Ci 

n; = 
N i 

oï 
we have 

(2 m, ni)2 — (2m2) (2 n2
;) < 0 
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which reduces to a sum of differences squared as follows : 

— V 2 (mini — mjiii)2 ^ 0. 
i = l j=i+l 

L e m m a 2a For B>0 , y ^ y (Eq. 16) 

where denote the optimal multipliers, 

proof: assume = then Eq. (17) implies 

X2 — —* K/2B 

MN2 — NN.MM 
where K is the positive square root of 

1 —ia*2.NN/B2 

Since by assumptions B > 0 and K > 0 V 2 < 0 , thus V i cannot be 
optimum. 

L e m m a 2b For B<0 , V ^ V i (Eq. 18) 

proof: s imi lar to L e m m a 2a. 

L e m m a 3 K exists it icr2>B2/NN 

proof: by Lemma 1 MN2—MM.NN<0; for the inside of the radi-
c2 

cand to be positive we must have 1 NN <S which implies 
B2 

<r>B 2 /NN. 

L e m m a 4 B2 /NN < B2 . MM/MN2 

proof: directly follows from Lemma 1. 

T h e o r e m 1 (Main Theorem) 

i) For B > 0 and icr2>B2 MM/MN2 the unique optimum multip-
lier values for P. Ill a re : 

\ \ = = (MN — K) / NN 

X*2 = W2 — K / 2B. 

ii) For B < 0 and o*2>B2/NN the unique optimum multiplier 
values to P. Ill are: 

\ \ = \ \ = (MN + K) NN 

"k*2 — X 2 — — K / 2B 
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proof: i) From Lemmas 3 and 4, K exists, thus (MN-K)/NN exists. 
Since NN>0, MN—K^O is sufficient for (MN—<K) N N ^ 0 . MN—K>Q, 
in turn, requires that (<r2>B2.MM/MN2. Moreover, K/2B exists and 
it is positive. 

ii) Since MN>0 , and NN>0 , existence of K is also sufficient 
for (MN + K) /NN>0. By lemma 3 K exists if o-2>B2/NN. Also since 
B<0 , —K/2B exists and it is positive. 

Efficient Locus 

Solving P. Ill for different feasible values of a2 a relationship 
between z and cr2 is obtained. The curve of this relationship will be 
called the efficient locus. We next consider the behavior of the 
efficient locus. 

Theorem 2 Efficient locus is concave in feasible cr's. 

dz 
Proof; •= \*2 by the property of the multipliers. 

do·2 

ÎK 

if B > 0 2B —K if B < 0 by lemma 2a and 2b. 2B 

d2z / NN (MN2 MM.NN) 

d(,a·2)2 J 8B (B2 — er2.NN)3 

NN (MN2 MM.NN) 

8B (B2 — a"2.NN)3 

if B > 0 

if B < 0 

Second derivative of expected returns with respect to cr2 is positive 
under both conditions, thus the efficient locus is concave. 

In Fig. 1 the shaded area represents the feasible solutions to P. 
HI. Those points that lie on the upper half of the boundary corres-
pond to therefore they are global optima, where as the lower 
half of the boundary corresponds to solutions for which 
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z K ) 

M İ ? C T 
Figure 1. The Efficient Locus when B ^ 0 . 

Optimum Decisions 

We remind the reader that the efficient iocus is the collection 
of the optimum solutions to problem II! for different levels of risk. 
The sahpe of the efficient locus clearly establishes the trade off 
between expected returns and the corresponding risk level. On the 
basis of this, the logical question becomes determining which one 
of those points on the efficient locus is the most desirable one. One 
way of resolving this dilemma is to resort to some utility conside-
rations. 

It is customary, especially in investment analysis, to postulate 
3U 3U 

a utility function of the form U = f(z, cr2) with — — > 0 and <0. 
az o·2 

These inequalities are justified on the basis of psychological 
assumptions about human behavior. The reader is referred to Farrar 
(1962) for extensive discussions of this type of utility funcitons. 
3U au 

> 0 and < 0 imply iso-utility contours with positive slopes. 
a z o3 

In other words, increased risk must be accompanied by increased 
expected returns to preserve the same level of utility. Although much 
less general agreement is available on the curvature of the iso-utility 
countours, economists usually tend to draw them convex, sugges-
ting that the decision maker's aversion to further risk is an increasing 
function of the amount already being taken (See Farrar (1962)). The 
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tangency point of iso-utility contours and the efficient locus deter-
mines the most desirable solution like in Fig. 2. 

ExampSe 
Hi N i 
15 20 16 
20 20 9 
30 20 4 

B=10; U=z-.<72 

By solving P. Ill for various of cr following points on the efficient 
locus are obtained. 

z a2 z — o·2 

18.65 3.00 15.65 
20.79 5.00 15.79 optimum (3) 
22.48 7.00 15.48 
23.91 9.00 14.91 
25.19 11.00 14.19 
26.35 13.00 13.35 

The corresponding optimum solution is: tx = —.27·, t2 = —.18; 
t3 = .94. The unit bids are easily obtained from the identities 
ti = Xi — Yi-

(2) This may not be the exact optimum since <f~ is varied in discrete intervals. 
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It should be clear that for a linear utility function it is not at all 
necessary to solve the problem repeatedly, for the optimum solution 
since opt imal ly occurs at the point where the slope of the utility 
contour, the coefficient of kt, equals the slope of the efficient locus, 
X2. A more exact solution could have been obtained to the above 
problem by letting \ 2 = I and solving for ti/s,X1 and er2. In general 
however, with non-linear utility functions the efficient locus would 
have to be searched over cr2. 

SUMMARY 

This paper tried to deal with risk encountered in bidding situati-
ons. Three different versions of the problem were presented, each 
with a different measure of risk. The proposed approach was to treat 
the measure of risk in order to establish the behavior of the trade 
off between the amount of risk and the expected returns. The paper 
also tried to use some utility arguments to single out the most 
desirable solution. 
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Ö Z E T 

Bazı İhalelerde Opîima! Teklif Stratejileri 

Bu çalışma belirli bazı ihale durumlarında optimal teklif strate-
jilerini araştırmaktadır. Bu tür stratejilerin uygulanmasında karşıla-
şılması zorunlu olan rizikonun açık bir biçimde göz önüne aimmasi 
çalışmanın asılı amacını oluşturmaktadır. Problemin üç ayrı formu-
lasyonu sunulmuş, bunlardan bir tanesi derinlemesine araştırılarak 
riziko ile beklenen optimum kazanç arasındaki ilişki saptanmıştır. 
Ayrıca, optimum kazanç-riziko seviyelerinin fayda fonksiyonları ara-
cılığı ile elde edilebileceği ileri sürülmüştür. 


